United States Patent

US009442744B2

(12) 10) Patent No.: US 9,442,744 B2
Lerum et al. 45) Date of Patent: *Sep. 13, 2016
(54) MULTILINGUAL BUILD INTEGRATION FOR 7,571,092 Bl 82009 Nieh
COMPILED APPLICATIONS 7,680,780 B2 3/2010 Dettinger et al.
7,814,415 B2 10/2010 Cox
7,983,895 B2 7/2011 McEntee et al.
(75) Inventors: Cameron B. Lerum, Renton, WA (US); 8780015 B2 7/2014 Lecmﬁle:t jﬂ,a
Jan Anders Nelson, Gig Harbor, WA 8,819,628 B2 8/2014 Raj
(as) 9,400,784 B2 7/2016 Lerum et al.
2003/0084401 Al 5/2003 A_bel et al.
(73) Assignee: Microsoft Technology Licensing, LLC, 2003/0135358 Al 7/2003 Lissauer et al.
Redmond, WA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 ) o
U.S.C. 154(b) by 695 days “International Search Report”, Application No. PCT/US2013/
o ’ 052604, Nov. 21, 2013, 4 pages.
Thi.s patent is subject to a terminal dis- (Continued)
claimer.
(21) Appl. No.: 13/563,579 Primary Examiner — Leonard Saint Cyr
. (74) Attorney, Agent, or Firm — Micky Minhas
(22) Filed: Jul. 31, 2012
(65) Prior Publication Data &7 ABSTRACT
US 2013/0226555 Al Aug. 29, 2013 Multilingual build integration for compiled applications is
. described in which support for application localization of
Related U.S. Application Data compiled programming languages is provided as an inte-
(63) Continuation-in-part of application No. 13/403,822, grated component of a development environment. Localiza-
filed on Feb. 23, 2012, now Pat. No. 8,789,015. tions integrate with application builds in the development
environment so that updates are synchronized with project
(51) Int. CL resources for multiple languages. This involves producing
GOG6F 17/28 (2006.01) translation target files (e.g., localization files) for one or
GO6F 9/44 (2006.01) more selected languages by parsing and interpreting source
(52) US. CL files for the project to identify resources for translation.
CPC e, GO6F 9/4448 (2013.01)  Localization files in the project that have been updated may
(58) Field of Classification Search be exposed in various ways for translation via the system, a
USPC e 704/2-10 translation service, or other translation source. Translated
See application file for complete search history. localization files are used to create dynamic resource files
for the particular programming language that are compiled
(56) References Cited as part of the build process into language specific resource
files. Compiled language specific resource files for multiple
U.S. PATENT DOCUMENTS languages may then be packaged together for distribution.
6,119,079 A 9/2000 Wang et al.
7,533,372 B2 5/2009 Rettig et al. 20 Claims, 8 Drawing Sheets

100
N

25 July

MBVY - Pat Show
TR0500

Galendar

Weather

TN

=

Ll | ‘

b} 3 1 g
iy (I

Computing Device 102
Operating
System 108
Applications
118

>
Module 112
{ Localizatior: C

Source
Coment 116 .

b

<t

Muliingual
Resource File 124

Translaied
Resourcos 126

(Engish )

‘y French
105,

Netyeork
2

d

Web Service 104

Module 114

Translation
Modlule 122




US 9,442,744 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2005/0033718 Al
2005/0050526 Al
2006/0271920 Al
2006/0287844 Al
2007/0169013 Al
2007/0282594 Al
2008/0127045 Al*

2/2005 Rettig et al.

3/2005 Dahne-Steuber et al.

11/2006 Abouelsaadat

12/2006 Rich

7/2007 Bak et al.

12/2007 Spina

5/2008 Pratt ....cccoovevrnnnn.. GOG6F 9/4448
717/104

2009/0094609 Al

2009/0132232 Al

2009/0204385 Al

2009/0222787 Al

2009/0276206 Al

4/2009 Burukhin et al.
5/2009 Trefler

8/2009 Cheng et al.
9/2009 Aldahleh et al.
11/2009 Fitzpatrick et al.

2009/0282394 Al  11/2009 Raj

2001/0119676 5/2011 Gallant

2011/0119676 Al*  5/2011 Gallant ..........coooovnnen 718/104
2011/0191703 A1* 8/2011 Doser etal. ................ 715/763

2012/0284690 Al
2013/0006603 Al
2013/0227522 Al 82013 Lerum

2014/0309983 Al  10/2014 Lerum et al.

OTHER PUBLICATIONS

11/2012 Blakeley et al.
1/2013 Zavatone et al.

“Non-Final Office Action”, U.S. Appl. No. 13/403,822, (Nov. 6,
2013), 22 pages.

Esselink, Bert “The Evolution of Localization”, Multilingual Com-
puting and Technology (2003), Available at <http://isg.urv.es/li-
brary/papers/Esselink_ Evolution.pdf>, (Jul. 2003), pp. 21-29.
Hojtsy, Gabor “Multilingual Web Applications with Open Source
Systems”, Thesis, Budapest University of Technology and Econom-
ics, Available at <http:/buytaert.net/files/gabor-hojtsy-thesis.
pdf>,(May 18, 2007), 85 pages.

“Notice of Allowance”, U.S. Appl. No. 13/403,822, Mar. 17, 2014,
7 pages.

Bateman, “Enabling technology for multilingual natural language
generation: the KPML development environment”, Natural Lan-
guage Engineering, vol. 3 Issue 1, Mar. 1997, 42 pages.
Bateman, et al., “Multilingual natural language generation for
multilingual software: a functional linguistic approach”, Applied
Attificial Intelligence, vol. 13, Issue 6, Aug. 1999, 26 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/318,052, Jun. 19,
2015, 26 pages.

Notice of Allowance, U.S. Appl. No. 14/318,052, Apr. 18, 2016, 14
pages.

Lewis,“Web Service Integration for Next Generation Localization”,
In Proceedings of WWW 2009, Available at <http://www.aclweb.
org/anthology/W/W09/W09-1509 pdf>, Jun. 5, 2009, pp. 47-55.
Final Office Action, U.S. Appl. No. 14/318,052, Dec. 9, 2015, 29

pages.

* cited by examiner



U.S. Patent Sep. 13,2016 Sheet 1 of 8 US 9,442,744 B2

100
Y

start

Mall
Browse favorites . 25 July
dan@provider.com

MBW - Pat Show

% 5 ::tgocr)nr;!wke 7:00-9:00
HH E E Calendar
Photos s M. Oak Creek

“wic 101° Sunny

Saturday 85° Cloudy
Sunday 87° T Storm

Weather

(Computing Device ﬁ\
Operating
L System 108
( Applications
( Source h o 110 y
N ( ITE
Content 116 . 4 Development ™ Multllmgual
h Resource File 124
Localization ) . _\__\% Module 112 | —
Files 118 | K Localization Translated
. Module 114 Resources 126
T . N s —— -
ranslations ’ LN y C English )
\_ 120 y 1' C French )
( Spanish )
Network :
106 e
{ Other )
\\ '

7

Web Service 104

Translation
Module 122

Fig. 1




U.S. Patent Sep. 13,2016 Sheet 2 of 8 US 9,442,744 B2

200
\‘

202
Convert source content associated with development of
an application into localization files having a designated
file format for one or more selected languages

204
Expose the localization files
in the designated format for translation

206

Obtain translations available for the
localization files from a translation source

N

08

Generate a multilingual resource file for the application
configured to contain resources in the one or more
selected languages using the obtained franslations.




U.S. Patent Sep. 13,2016 Sheet 3 of 8 US 9,442,744 B2

300
\

302
Compile source content of a project for a build
of an application under development

l

304
Create a log file in a system format that
describes resources for the project

l

306
[ Transform the log file from the system format to a

desingated format established for translations
308

Update localization files included in the project for
translations of the application into one or more
languages selected for the project

A WD WA N

:

( 310 A
Convert updated localization files in the project for
which translations are available from the designated

Y format back into a system format
: 4 \
312

Produce a multilingual resource file for the
application that incorporates the translations




U.S. Patent Sep. 13,2016 Sheet 4 of 8 US 9,442,744 B2

400
\

402 )
Ascertain one or more languages selected for
franslations of an application under development

!

404
Create updated localization files for each selected language
in a designated format established to facilitate translations

406 b
Produce a log file in a system format that
\ describes resources for a build of the application

v
408 ™)

Parse the log file to identify and
\ extract localizable resources in the build

-

Convert the extracted localizable resources to generate a
source resource file for the build in the designated format

v

4 412 )

Merge the source resoruce file with target localization files
included in the project for the one or more languages to
form localization files that are updated for the build

414 h
Compare resources between the source resource file and
each target localization file to find matching resources

L]

416 h

Update resources in the source resource file with
matching resources from the target translation file

\\

(

\\

s

.

\\

Fig. 4



U.S. Patent Sep. 13,2016 Sheet 5 of 8 US 9,442,744 B2

500
R

502
Produce localization files associated with multiple
languages selected for a project to enable translations of
a corresponding application by a translation source

!

504
Combine translations available for resources described in the
localization files to produce a multilingual resource file
having translated resources for the multiple languages

506 A
Determine whether a translation is
available for each resource

v

508 h

Incorporate translated resources from available
translations into the multilingual resource file




U.S. Patent Sep. 13,2016 Sheet 6 of 8

600
—\

Source
Content 116 - ~
- Selected Languages
N 602

~
~
~

A. Project Updates ™ (__English )

( French )

™
°
\ ®
i
|
|
l
Locahzahon
Files 118
|
: C. Convert
Dynamic Resource
Files 604
i
E.Discard < ———~———- ! D.Compile
£ ¥

Compiled Language
Specific Resorces 606

|
|
|

v

Multilingual
Package 608

F. Produce

(

Translated
Resources 126

{ English )
( French )

®
Y ® y

Fig. 6

US 9,442,744 B2

B. Asynchronous

Translation

[

Translations
120

)




U.S. Patent Sep. 13,2016 Sheet 7 of 8 US 9,442,744 B2

700
—\

702
Obtain compiled source content of a project for a
build of an application under development

'

~
704
Parse raw resource files of the compiled
{J

source content to identify
localization files to update for the build

'

706
pdate the identified localization files for translationsJ

of the application into one or more languages
selected for the project based on the parsing

l

708

Create dynamic resource files for each selected
language from the updated localization files

'

710
{ Compile the dynamic resource files into }

compiled language specific
resources for each selected language

'

712
Package the compiled language specific resources
for each selected language for distribution in
accordance with a publishing model for the project

w

Fig. 7



U.S. Patent Sep. 13,2016 Sheet 8 of 8 US 9,442,744 B2

800
_\‘

Platform 822

[ Resources 8§24 )

Y

AN /,
N Ve
AN Vi

Cloud
820

;

Computing Device 802

Processing Computer-readable ]
System 804 Media 806

Hardware Memory/
Elements 810 Storage 812

\{ Ny

g N ™

11O Localization
Interfaces 808 Module 114

Television

Computer 814 818

Mobile 816

SEd
iy




US 9,442,744 B2

1
MULTILINGUAL BUILD INTEGRATION FOR
COMPILED APPLICATIONS

PRIORITY

This application is a continuation-in-part of and claims
priority under 35 U.S.C. §120 to application Ser. No.
13/403,822 filed Feb. 23, 2012 and titled “Integrated Appli-
cation Localization,” the disclosure of which is incorporated
by reference herein in its entirety.

BACKGROUND

Globalization and localization of applications refers to a
process of designing and developing applications that func-
tion for different languages, cultures, and locales. One
challenge associated with creating multilingual applications
is handling of translations for different languages and incor-
poration of the translations for testing of different builds in
the development process. Traditionally, integrated develop-
ment environments (IDEs) provide limited tools for trans-
lations and localizations. Thus, developers may be forced to
conduct translation related activities on their own (e.g.,
outside of activities managed by the IDE), which can be time
consuming and costly. Moreover, multiple individual lan-
guage specific resource files corresponding to each selected
language are typically maintained for a development project
and the developer may have to expend considerable effort
each time updates are made to populate the updates across
the multiple language specific resource files and obtain
translations. These complexities act as barriers that may
make it difficult or prohibitive for some developers (e.g.,
individuals and small entities) to produce multilingual appli-
cations.

SUMMARY

Multilingual build integration for compiled applications is
described in which support for localization of compiled
programming languages is provided. Localizations integrate
with application builds in a development environment so
that updates are synchronized with project resources for
multiple languages. This involves producing target transla-
tion files (e.g., localization files) for one or more selected
languages by parsing and interpreting source files for the
project to identify resources for translation. Localization
files in the project that have been updated may be exposed
in various ways for translation via the system, a translation
service, or other translation source. Translated localization
files are converted to create dynamic resource files for the
particular programming language that are then compiled as
part of the build process into language specific resource files
for the project. Compiled language specific resource files for
multiple languages may then be packaged together for
distribution in accordance with a publishing model for the
particular programming language.

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the
accompanying figures. In the figures, the left-most digit(s) of

10

35

40

45

65

2

a reference number identifies the figure in which the refer-
ence number first appears. The use of the same reference
numbers in different instances in the description and the
figures may indicate similar or identical items.

FIG. 1 is an illustration of an environment in an example
implementation that is operable to employ integrated local-
ization techniques.

FIG. 2 is a flow diagram depicting a procedure in an
example implementation in which a multilingual resource
file or package is generated.

FIG. 3 is a flow diagram depicting a procedure in an
example implementation in which application localization is
integrated with a build process for an application develop-
ment project.

FIG. 4 is a flow diagram depicting a procedure in an
example implementation in which localization files are
created to facilitate translations.

FIG. 5 is a flow diagram depicting a procedure in an
example implementation in which available translations are
used to form a single multilingual resource file for an
application.

FIG. 6 is a diagram depicting techniques for multilingual
build integration for compiled applications in accordance
with one or more embodiments.

FIG. 7 is a flow diagram depicting a procedure in an
example implementation in which dynamic resource files are
created and compiled to produce multilingual packages for
compiled applications in accordance with one or more
embodiments.

FIG. 8 illustrates an example system and components of
the system that can be employed to implement embodiments
of the techniques described herein.

DETAILED DESCRIPTION

Overview

Multilingual build integration for compiled applications is
described in which support for localization of compiled
programming languages is provided. Localizations integrate
with application builds in a development environment so
that updates are synchronized with project resources for
multiple languages. This involves producing target transla-
tion files (e.g., localization files) for one or more selected
languages by parsing and interpreting source files for the
project to identify resources for translation. Localization
files in the project that have been updated for a build may be
exposed in various ways for translation via the system, a
translation service, or other translation source. Translated
localization files are converted to create dynamic resource
files in a format for the particular programming language
that are then compiled as part of the build process into
language specific resource files for the project. Compiled
language specific resource files for multiple languages may
then be packaged together for distribution in accordance
with a publishing model for the particular programming
language.

In the following discussion, an example environment is
first described that may employ the techniques described
herein. Example procedures are then described which may
be performed in the example environment as well as other
environments. Consequently, performance of the example
procedures is not limited to the example environment and
the example environment is not limited to performance of
the example procedures. Lastly, an example system and
components of the system are described that can be
employed in one or more embodiments.



US 9,442,744 B2

3

Example Operating Environment

FIG. 1 is an illustration of an environment 100 in an
example implementation that is operable to employ tech-
niques described herein. The illustrated environment 100
includes a computing device 102 and a web service 104 that
are communicatively coupled via a network 106. The com-
puting device 102 and the web service 104 may each be
implemented by a wide range of computing devices.

For example, a computing device 102 may be configured
as a computer that is capable of communicating over the
network 106, such as a desktop computer, a mobile station,
an entertainment appliance, a tablet or slate device, a surface
computing device, a set-top box communicatively coupled
to a display device, a mobile communication device (e.g., a
wireless phone), a game console, and so forth. The comput-
ing device 102 may be configured as any suitable computing
system and/or device that employ various processing sys-
tems, some additional examples of which are discussed in
relation to the example system of FIG. 8.

The computing device 102 is further illustrated as includ-
ing an operating system 108. Generally speaking, the oper-
ating system 108 is configured to abstract underlying func-
tionality of the computing device 102 to applications 110
that are executable on the computing device 102. For
example, the operating system 108 may abstract processing,
memory, network, and/or display functionality of the com-
puting device 102 such that the applications 110 may be
written without knowing “how” this underlying functional-
ity is implemented. The application 110, for instance, may
provide data to the operating system 108 to be rendered and
displayed by the display device without understanding how
this rendering will be performed. The operating system 108
may provide various services, interfaces, and functionality
that applications 110 may invoke to take advantage of
system features. A variety of applications 110 to provide a
wide range of functionality to the computing device 102 are
contemplated including but not limited to a browser, an
office productivity application, an email client, a multi-
media management program, device management software,
a software development environment, and networking appli-
cations, to name a few examples.

The operating system 108 may also represent a variety of
other functionality, such as to manage a file system and a
user interface that is navigable by a user of the computing
device 102. An example of this is illustrated as the user
interface configured as an application launcher or start
screen (e.g., desktop) for the computing device 102 that is
depicted in FIG. 1. The representations or tiles as shown in
the illustrated example are selectable to launch a corre-
sponding one of the applications 110 for execution on the
computing device 102. In this way, a user may readily
navigate through a file structure and initiate execution of
applications of interest.

The operating system 108 further provides services, inter-
faces, and functionality for different kinds of applications
including “legacy” applications that may be written using
statically compiled languages (e.g., “compiled” applica-
tions), such as C++, C# and “modern” applications that may
be written using dynamic scripting languages, such as
JavaScript, hypertext markup language revision 5 and/or
cascading style sheets (HTMLS5/CSS), and extensible appli-
cation mark-up language (XAML). Modern applications
may operate through one or more runtime platforms sup-
ported by the operating system 108 that are configured to
provide respective execution environments for correspond-
ing applications. Runtime platforms provide a common set
of features, routines, and functions for compatible applica-

10

15

20

25

30

35

40

45

50

55

60

65

4

tions thereby offloading coding of common tasks from
application development. Thus, runtime platforms can
facilitate portability of applications to different kinds of
systems with little or no change to the dynamic script for the
applications and/or without recompiling. Examples of run-
time platforms include JAVA™ runtime environment (JRE),
Adobe™ Flash™, Microsoft™ NET framework, Microsoft
Silverlight™, and WinRT™, to name a few examples.

The computing device 102 also includes a development
module 112 that represents functionality operable to provide
an integrated development environment (IDE) for develop-
ment of applications 110. The development module 112
generally provides application lifecycle management includ-
ing support for design, development, testing, and/or deploy-
ment of applications. The development module 112 may
support different programming languages and integrate dif-
ferent components to simplify application development such
as a code editor, a compiler, build automation tools, a
debugger, and so forth. Thus, the development module 112
provides functionality for a developer to create/edit source
content 116 for a project and compile the source content 116
to build an application 110.

In accordance with techniques described herein, the
development module 112 may include or otherwise make
use of a localization module 114. The localization module
114 represents functionality operable to create and manage
translation files for a project from within an IDE. The
localization module 114 is further configured to coordinate
management and synchronization of project updates across
multiple selected languages as resources in a development
project are updated. As discussed in greater detail below, the
localization module 114 enables developers to create mul-
tilingual applications that use a single language resource file
or package. The integration of localization functionality
within the IDE implemented via the localization module 114
enables developers to use familiar menus, dialogs, tools,
commands, and interfaces to handle translation related
activities alongside with application development activities.

In operation, a developer may use the IDE to design,
define, create and edit source content 116 (e.g., code,
images, styles, annotations, etc.) in a project for an appli-
cation. In the course of developing the application, a number
of builds of the project may occur. The localization module
114 enables the developer to specify multiple languages for
translations of the project into different languages. This
causes localization files 118 corresponding to each of the
specified languages to be created as part of the project. The
localization files 118 may correspond to translation projects
for each selected language that are linked to or otherwise
associated with an application development project and used
to store, manage, and update translations 120 for the corre-
sponding application. The localization module 114 imple-
ments updating of localization files 118 as part of the build
process so that the localization files 118 reflect updates as
resources are updated in the project and/or for each build.
The localization module 114 may also determine when a
string or resource is removed from the project and can
remove corresponding translations as part of the update
process.

Separate localization files 118 may be created for each
additional language selected for a project. A standard, des-
ignated file format for the localization files 118 is employed
to facilitate translations 120 in various ways and by various
translation sources. The designated file format is generally
configured to provide a consistent and expected format for
project resources that are to be translated. Using a desig-
nated file format that is widely accepted and compatible with



US 9,442,744 B2

5

a variety different translation techniques and sources pro-
vides the developer with flexibility to handle translations
120 in many different ways. The localization module 114
may be configured to create localization files 118 in the
designated file format and handle conversions of resources,
log files, and other data between the designated file format
and native, system formats for the operating system 108,
IDE, and/or a particular project.

A variety of suitable file formats for handling translations
120 are contemplated. One example file format suitable to
implement the described techniques is XLIFF (extensible
markup language localization interchange file format).
XLIFF is an XML-based format created to standardize
exchange of data for localization. XLIFF specifies elements
and attributes to aid in localization and can be employed as
a transport mechanism for localizable data between com-
patible processes, systems, and entities. Although XLIFF is
used by way of example in various places herein, it is to be
appreciated that other formats suitable to transport localiz-
able data for translations may also be employed.

For each build, the localization module 114 may provide
and expose localization files 118 to obtain corresponding
translations 120. Translations 120 may be generated in any
suitable way. For example, localization files 118 may be
exported to a web service 104 that includes or makes use of
a translation module 122. The translation module 122 rep-
resents functionality operable to translate files into desig-
nated languages. The translation may include manual trans-
lations facilitated via the translation module 122 (e.g. via an
editing tool/interface), machine translation techniques,
pseudo-translations, and/or combinations thereof. Although
illustrated as being provided via the web service 104, a
translation module 122 may also be provided as a compo-
nent of the development module 112, as a service accessible
through the development module 112, as a standalone appli-
cation, and so forth. In some embodiments, the localization
module 114 may provide an editor module that may be used
to edit and translate localization files. When exporting files,
the localization module 114 may include the editor module
and/or a link to enable downloading of the editor module
with the exported files. Thus, the localization module 114
may email or otherwise send out localization files 118 for
translation to one or more selected translation sources (e.g.,
individuals, a pseudo-translation engine, translation ser-
vices, service providers, etc.) and may optionally include the
editor module to facilitate translations by the translation
sources.

Additionally the localization module 114 may incorporate
a pseudo-translation engine that can be used for localization
testing. Pseudo-translation is used to translate a project into
a pseudo language to identify translation issues such as
hard-coded, concatenated, and/or truncated strings as well as
line breaks, spacing problems, visual issues, attribute value
translation issues, or other issues that can result in some
translations. These kinds of issues may result due to changes
in string length and attribute values for elements (generally
string growth) that occurs when string are translated. The
pseudo-translation engine may be employed to simulate
various character, string length, and/or attribute value
changes that may result in translation issues. The pseudo-
translation engine can therefore operate to produce a
pseudo-translation in accordance with techniques described
herein. For instance, a pseudo language may be selected by
a developer as one of the translation languages for a project.
Pseudo-translations into the pseudo language are produced

10

15

20

25

30

35

40

45

50

55

60

65

6

via the pseudo-translation engine in XLIFF or another
designated format and can be edited in the same manner as
other language translations.

As described in detail in relation to the following example
procedures, the localization module 114 may consume trans-
lations 120 to produce a multilingual application that uses a
single resource file for multiple selected languages. In
particular, the localization module 114 may integrate cre-
ation of multilingual resource files with development via an
IDE of modern applications (e.g., applications written using
dynamic scripting languages such as XAML, HTML/CSS,
and/or Java Script). The same or a different localization
module 114 may also be configured to support creation of
multilingual resource files for legacy and other compiled
applications that may be incorporated and distributed via an
appropriate package. As represented in FIG. 1, a multilin-
gual resource file 124 (or package) may be produced via the
development module 112 with assistance of the localization
module 114 based on translations 120 of localization files
118 exposed to translation sources using XLIFF or another
suitable file format. The multilingual resource file 124 is
configured to contain translated resources 126 for multiple
languages in a single file/package. The translated resources
126 resources may be updated based upon available trans-
lations 120 for each build of the application. In this manner,
developers may focus on creating an application in one
language and obtain support/functionality for making the
application multilingual as an integrated part of the devel-
opment process with little additional effort.

Having considered an example operating environment,
consider now some example procedures for integrated appli-
cation localization in accordance with one or more embodi-
ments.

Integrated Localization Details

The following discussion describes implementation
details of integrated localization techniques that may be
implemented utilizing the previously described systems and
devices. In particular, general details of integration of local-
izations within an IDE are described in relation to an
example procedure of FIG. 2. Thereafter, a section titled
“Integrated Application Localization” addresses localization
techniques applicable to modern applications that make use
of dynamic script languages and/or produce log files as part
of a build process that describe build updates and can be
leveraged to implement in-build localizations. Then, a sec-
tion titled “Multilingual Build Integration for Compiled
Applications” discusses extensions of localization tech-
niques to support applications that employ statically com-
piled programming languages and/or applications for which
suitable log files describing build updates may otherwise be
unavailable.

Aspects of each of the procedures described below may
be implemented in hardware, firmware, or software, or a
combination thereof. The procedures are shown as a set of
blocks that specify operations performed by one or more
devices and are not necessarily limited to the orders shown
for performing the operations by the respective blocks. In
portions of the following discussion, reference will be made
to the example environment discussed above. In at least
some embodiments, the procedures may be performed by a
suitably configured computing device, such as the example
computing device 102 of FIG. 1 that includes or otherwise
makes use of a localization module 114.

FIG. 2 depicts a procedure 200 in an example implemen-
tation in which a multilingual resource file or package is
generated. Source content associated with development of
an application is converted into localization files having a



US 9,442,744 B2

7

designated file format for one or more selected languages
(block 202). For instance, a development module 112 may
provide an IDE that a developer may employ to develop an
application. In accordance with techniques described herein
the development module 112 may include a localization
module 114 to facilitate creation of the application as a
multilingual application. The developer is therefore able to
select different languages for the application, which causes
corresponding localization files to be created for each
selected language. For instance, the developer may input
selections of languages from a menu or other user interface
instrumentality provided in connection with a project for the
application. In response to these selections, the localization
module 114 may create sub-projects for each selected lan-
guage. The sub-projects may include respective localization
files 118 to contain resources that are updated and translated
as an integrated part of the development process. The
localization files 118 may be implemented via XLIFF or
another designated file format used to facilitate translations.
During the build process for the application, existing local-
ization files 118 in a project may be automatically updated
with changes made to source content in the project and/or
new localization files for selected languages may be created.
This may involve conversions of resources and data between
a native or system format used by the IDE for the project and
the designated file format. Additional details regarding cre-
ation and use of suitable localization files 118 for modern
and legacy applications are discussed below in relation to
FIGS. 3-7.

The localization files are exposed in the designated format
for translation (block 204). For instance, localization files
118 that are updated to reflect changes made during a build
may be exposed for translation in various ways. As men-
tioned, a variety of techniques and translation sources may
be employed to conduct translations. For example, a devel-
oper may input selections via the localization module 114 to
export localization files 118 to a selected local or network
storage location, send files to recipients via email or other
communications, invoke a integrated translator of the sys-
tem or a remote web service 104 configured to perform
translations, launch an editor module to perform manual
translations, or otherwise interact with one or more transla-
tion sources to initiate and/or perform translations of the
localization files 118.

Translations that are available are obtained for the local-
ization files from a translation source (block 206). Transla-
tions may be driven by the build process in the sense that
localization files 118 used for translations are produced as a
part of the build process. The actual translations, though,
may be performed asynchronously so that the build process
is not delayed while waiting for translations. Translations
initiated in a particular build may not be ready for incorpo-
ration in the application until a subsequent build. Accord-
ingly, the localization module 114 may be configured to
check for available translations during each build and
obtain/incorporate available translations that are completed
based on previous builds. Translations 120 produced by
and/or returned from translation sources may be stored in a
particular storage location that is accessible by the localiza-
tion module 114 to obtain available translations. The trans-
lations 120 may be provided in XLIFF or another suitable
file format as discussed previously.

Resources for which translations are available may be
incorporated in a multilingual resource file or package
during a particular build. If translations for resources or
languages are not available, however, then incorporation of
those resources or languages does not occur until transla-

10

15

20

25

30

35

40

45

50

55

60

65

8

tions are available (e.g., in a subsequent build). Thus, the
process of updating localization files 118 with changes,
obtaining corresponding translations, and incorporating lan-
guage specific resources into an application build may
involve multiple build passes. Additional details regarding
incorporation of translated resources for multiple languages
are discussed below in relation to example procedure of FIG.
5.

A multilingual resource file is generated for the applica-
tion that is configured to contain resources in the one or
more selected languages using the obtained translations
(block 208). Here, translated resources that are available
from translations 120 corresponding to one or more lan-
guages may be extracted, processed, compiled and/or added
to multilingual resources available for the corresponding
application. The localization module 114 may operate to
convert resources described in XLIFF (or other standard
format) back into a native system format. The localization
module 114 combines translated resources 126 for multiple
languages to form a single multilingual resource file 124 or
an appropriate package for distribution of the application.
Thus, the localization module 114 coordinates updates
across multiple languages and automatically synchronizes
inclusion of available translations into a multilingual
resource file or package. Additional aspects of techniques for
integrated application localization are discussed in relation
to the following figures.

Integrated Application Localizations

FIG. 3 depicts a procedure 300 in an example implemen-
tation in which application localization is integrated with a
build process for an application development project. Source
content of a project for a build of an application under
development is compiled (block 302). For instance, a com-
piler of a development module 112 may be invoked to
compile the project. A log file is created in a system format
that describes resources for the compiled project (block
304). For example, the development module 112 by may
create a log file that logs resources for a particular build. The
log file reflects any changes made to the source content for
the project and corresponding resources. The log file may be
output in a native, system format for the IDE, operating
system 108, and/or particular project.

The log file is transformed from the system format to a
designated format established for translations (block 306).
To do so, the localization module 114 may be configured to
convert the log file to a designated format, such as XLIFF.
The transformation creates a source resource file for the
project that can be employed to update language specific
localization files 118. Thus, a common source resource file
may be used to populate changes to localization files 118
corresponding to multiple different languages.

In particular, localization files that are included in the
project for translations of the application into one or more
languages selected for the project are updated (block 308).
As mentioned, different localization files may be included in
a project for different languages selected by a developer.
These target files may use a file format that is designated for
translations, such as XLIFF. The source resource file may be
used to update the different target localization files with any
changes for the build. This may include updating localiza-
tion files that reflect previous translations and/or populating
localization files for newly selected languages with
resources described in the source resource file. In general,
modifications, additions, or deletions of resources described
by the source resource file may be merged with the local-
ization files to produce updated localization files. Resources
that have already been translated and have not changed,



US 9,442,744 B2

9

though, are preserved in the updated localization files to
avoid having to re-translate these resources. Updated local-
ization files may then be exposed for translation in various
ways as discussed above and below.

Updated localization files in the project for which trans-
lations are available are converted from the designated
format back into a system format (block 310) and a multi-
lingual resource file for the application is produced that
incorporates the translations (block 312). Here, for the
particular build, the localization module 114 may obtain
available translated resources 126 and incorporate the trans-
lated resources 126 into a multilingual resource file 124 for
the corresponding application. Translation activities may be
conducted using a designated file format such as XLIFF.
Thus, the incorporation of translated resources into an
application involves conversion of translations from the
designated file format back into an appropriate system
format for the multilingual resource file 124. The localiza-
tion module 114 is configured to determine resources to
include in the multilingual resource file based on available
translations and handle the conversions.

FIG. 4 is a flow diagram depicting a procedure 400 in an
example implementation in which localization files are
created to facilitate translations. One or more languages are
ascertained that are designated for translations of an appli-
cation under development (block 402). For example, a
developer may select multiple languages for a project as
mentioned previously. This may occur at various times
including when the project is initiated, as part of source
content creation/editing, during a build, and so forth. Selec-
tion of different languages for a project may cause associa-
tion of sub-projects (e.g., translation projects) with the
project that are configured to contain corresponding local-
ization files 118 for different languages. The project may
include data indicative of the selected languages that the
localization module 114 may reference to recognize lan-
guages designated for the project. In one approach, local-
ization files 118 may be created in the project for languages
that are designated. Initially, the localization files 118 may
be placeholders that contain little or no data regarding
project resources. The localization files 118 may then be
populated with data during builds as described above and
below. In another approach, creation of localization files for
newly designated languages occurs as part of the updating
process performed during builds. In this case, pre-existing
files for some languages may be updated and data indicative
of newly selected languages in the project may be used to
trigger creation of corresponding localization files 118.

Updated localization files are created for each of the
designated languages in a designated format established to
facilitate translations (block 404). This may occur in any
suitable way. In general, the localization module 114 may
perform processing during a build to identify resources that
are “localizable” and produce corresponding localization
files. In other words, the localization module 114 may
distinguish between data such as elements, strings, and tags
for a project that are to be translated, e.g., localizable
resources, and other data of the project that may not be
suitable for translation such as language-neutral terms,
proper names, universal code, numbers, and so forth. Sepa-
ration of localizable resources in this manner serves to
simplify the translation process and avoid unnecessary pro-
cessing. In some embodiments, a pseudo translation engine
may be employed by the localization module 114 to assist in
recognition of localizable resources. The localization mod-
ule 114 may also parse metadata associated with resources
(e.g., comments, resource IDs, categorization data, tags,

5

10

20

25

30

35

40

45

50

55

60

65

10

etc.) to support recognition of localizable resources and
creation of translations via an editor module or other trans-
lation source. Metadata for example may include particular
tags or other data that the localization module 114 can
reference to perform and control automated processes for
pseudo translation, machine translation, and/or validation of
translated resources.

One example approach to create updated localization files
is represented by sub-blocks of block 404 in FIG. 4. In
particular, a log file is produced in a system format that
describes resources for a build of the applications (block
406) and the log file is parsed to identify and extract
localizable resources in the build (block 408). The extracted
localized resources are then converted to generate a source
resource file for the build in the standard format (block 410).

The log file in this case may be a default file that is
produced as part of the build to describe corresponding
resources of an application. Accordingly, the log file may be
generated in an appropriate system format used for the
build/project. The localization module 114 may operate to
parse the log file to identify resources for translation based
on metadata, tags, or other suitable data associated with
resources in the log file. The localization module 114 may
also extract these “localizable” resources to separate the
localizable resources out from other resources. Additionally,
the localization module 114 converts the localizable
resources described in the log file to a suitable standard
format (e.g., XLIFF) that is used for translations. This
produces a source resource file that can be employed to
update, create, and/or populate localization files 118 for the
one or more languages that are ascertained per block 402.

The source resource file is merged with target localization
files included in the project for the one or more languages to
form localization files that are updated for the build (block
412). This may include populating changes to existing
localization files and/or creating new localization files for
different languages. To merge the files, resources are com-
pared between the source resource file and each target
localization file to find matching resources (block 414). The
comparison may be used to identify items that have been
added or changed. In addition, resources that have been
previously translated may also be identified. If a localization
file for a designated language does not exist, the localization
module 114 may create a new localization file in the project.
Then, resources in the source resource file are updated with
matching resources from the target localization file (block
416). The resulting merged files may be saved as updated
versions of the localization files that may replace the pre-
vious target files. Any changes and additions are therefore
populated to the various localization files. Resources that
have not changed may be retained and translations for
source resources that have been removed may be deleted.
Further, previous translations of matching resources from
the target files may be merged into the updated versions. The
output of this process is updated localization files for each of
the designated languages that reflect changes made for the
build and may include any previous translations. The
updated localization files may be translated and incorporated
into an application in various ways, some examples of which
are discussed above and below.

FIG. 5 is a flow diagram depicting a procedure 500 in an
example implementation in which available translations are
used to form a single multilingual resource file for an
application. Localization files are produced that are associ-
ated with multiple languages selected for a project to enable
translations of a corresponding application by a translation
source (block 502). For instance, updated localization files



US 9,442,744 B2

11

for selected languages may be created via a localization
module 114 in various ways described in relation to the
previous figures. In at least some embodiments, localization
files 118 are produced using XLIFF. The XLIFF file format
is one example of a format suitable to enable translation by
a variety of translation sources. Accordingly, a developer
may choose to perform translations in various ways using
XLIFF or another designated format. Translated files result-
ing from the translations may be stored in a database or other
file storage location accessible to the localization module
114. The localization module 114 may then consume the
translated files to construct a multilingual resource file for
the project.

In particular, translations that are available for resources
described in the localization files are combined to produce a
multilingual resource file having translated resources for the
multiple languages (block 504). This may occur in any
suitable way. For example, the localization module 114 may
check for available translations during each build of an
application and use available translations to create a corre-
sponding resource file. In one approach to combining avail-
able translations, a determination is made regarding whether
a translation is available for each resource (block 506). For
instance, the localization module 114 may examine and
process XLIFF files for each language that are included in
the project to discover translated resources. Then, translated
resources for available translations are incorporated into the
multilingual resource file (block 508). The incorporation of
translated resource may generally involve creation of a log
of various translated resources based on examination of the
XLIFF files and conversion of the log from XLIFF (or
another selected format) back into a system format associ-
ated with the application development. In this manner, a
single multilingual resource file containing resources for
multiple languages may be created for an application. The
multilingual resource file may facilitate testing of the appli-
cation during different builds and in different languages.
Additionally, the multilingual resource file may be published
with a completed version of the application to enable
multilingual deployment and use.

Multilingual Build Integration for Compiled Applications

As mentioned, the techniques in the preceding section are
suitable for applications and programming languages/mod-
els that may produce log files as part of a build process. The
log files describe build updates and can be leveraged to
implement in-build localizations in the foregoing manner.
Generally, the techniques are designed to support build
integration for modern applications programmed using
dynamic scripting languages.

In the case of some applications and programming lan-
guages, suitable log files that can be used for localizations
may not be produced as part of the application build. In other
words, compilers for some programming languages and/or
legacy applications (e.g., statically compiled languages/
applications) may not natively generate log files comparable
to those described above. The discussion now turns to
extension of the previously described techniques to support
build integration for such “compiled” applications and pro-
gramming languages.

In general, multilingual build integration for compiled
applications is supported by creating appropriate files cor-
responding to a build update that may be used to facilitate
localizations. This may involve parsing and interpreting
source files for the project to identify resources in the project
that have been updated. Since log files having build update
information may be unavailable for some applications, the
system may be configured to produce suitable localization

10

15

20

25

30

35

40

45

50

55

60

65

12

files 118 by processing raw source files. Thus, when log files
are unavailable for a particular build, project, or program-
ming language, the system may be designed to generate and
handle substitute localization files 118 that provide indica-
tions of update resources and items in a project for transla-
tion. Additionally, the system may be configured to create
and use dynamic resource files corresponding to the local-
ization files 118 to compile and package multilingual
resources in an appropriate format for the programming
language. Further details of these and other aspects of
multilingual build integration for compiled applications are
described in relation to the following figures.

FIG. 6 is a diagram depicting generally at 600 techniques
for multilingual build integration for compiled applications
in accordance with one or more embodiments. Here, source
content 116 for a project may be updated in the manner
previously described. The project may include various
selected languages 602 and corresponding sub-projects to
handle translations as described in relation to FIG. 2. The
sub-projects are employed to contain XLIFF or other kinds
of localization files 118 for the project that may be updated
as part of the build process. Instead of relying upon log files
output by the build engine as described previously, the
localization module 114 may operate to parse and interpret
raw source resource files of the build to recognize updates
that have occurred to the source code, identity localization
issues and resources for translations, and initialize transla-
tions through a selected source. The process of translating
localization files 118 contained in the project may then occur
in the same manner as described above. Here, resources that
have changed in the project and accordingly may be set-up
for translation are identified by direct examination and
processing of raw source resource files as opposed to
interception and conversion of pre-generated log files as in
the case of build integration for modern applications
described previously.

As represented in FIG. 6, at act “A” project updates may
occur that modify source content 116 in some manner. The
project updates may be performed through an IDE that
supports multilingual integration for selected languages 602.
In one approach, raw source files for the project may be
processed to identify resources to update. Specifically, local-
ization files 118 included in the project for different lan-
guages may be updated to reflect changes made to the
project. The updating may occur in a manner comparable to
the process described in relation to FIG. 3 above. Here,
modifications, additions, or deletions of resources to be
merged with target localization files in the project are
identified based on processing of the raw source files per-
formed by the system/localization module 114. Merging of
identified changes then produces updated localization files
that reflect the project updates. Localization files 118 may
have a designated file format such as XLIFF or another
format designed to facilitate translations.

As before, updated localization files may be exposed for
translation in various ways and translations may occur
asynchronously with the particular build in which the
updated localization files are produced. Asynchronous trans-
lation of resources to obtain translations 120 is represented
by act “B”. Translations 120 that are obtained from various
sources may be fed back into the workflow in connection
with converting localization files into dynamic resource files
604 as represented by act “C”. In general, the dynamic
resource files 604 are intermediary files that are created by
transforming localization files for a project into program-
ming language specific formats that may be employed to
compile multilingual resources into a build. Dynamic



US 9,442,744 B2

13

resource files 604 may correspond to the particular program-
ming language employed for the project and may be recog-
nized and handled by an associated compiler for the par-
ticular programming language and/or development
framework. In the course of building the dynamic resource
files 604, the system may check whether translations (e.g.,
translations performed asynchronously) are available for
each resource and generate the dynamic resource files 604 to
incorporate any available translations that are discovered. A
different dynamic resource file may be generated for each
selected language of the project.

The dynamic resource files 604 may then be consumed by
a compiler invoked by the system to compile language
specific resources into the project. In particular, the local-
ization module may invoke an appropriate compiler to
compile the dynamic resource files 604 into compiled lan-
guage specific files 606 as represented by act “D”. The
compiled language specific resources 606 are generated in a
format appropriate for the particular programming language
and/or development framework. A variety of different lan-
guages/frameworks and corresponding compilers may be
supported by the IDE. As represented by Act “E”, the
dynamic resource files 604 are created and used during a
build session for translations into and out of XLIFF or
another designated file format. Accordingly, the dynamic
resource files 604 may be employed for a particular session
and are then discarded when the session/build is complete or
at another selected time in the workflow. The dynamic
resource files 604 therefore are created and recreated for
each build session as a mechanism through which transla-
tions may be added to a compiled build through the IDE.

As represented by act “F”, a multilingual package 608
may be produced to contain the compiled language specific
resources 606 for the application. In particular, the multi-
lingual package may contain translated resources 126 for
each language supported by the application. The format for
the multilingual package 608 may depend upon the particu-
lar programming language and/or development framework
employed to develop the application. Generally, the multi-
lingual package 608 provides a mechanism to distribute the
project/application ~ with  the  multilingual/translated
resources in accordance with a corresponding publishing
model. For instance, applications may be distributed via an
application store provided by a service provider, on distrib-
utable media, and so forth. Additional details are described
in relation to the following example procedure.

FIG. 7 is a flow diagram depicting a procedure 700 in an
example implementation in which dynamic resource files are
created and compiled to produce multilingual packages for
compiled applications in accordance with one or more
embodiments. Compiled source content of a project is
obtained for a build of an application under development
(block 702). For example, a developer may make use of an
IDE to create or update an application project. The IDE may
incorporate a localization module 114 as described previ-
ously. During a build, the developer may make code changes
and compile the project to produce raw resource files. The
raw resource files may be intercepted and processed by the
localization module 114 to translate the project into one or
more selected languages.

In particular, raw resource files of the compiled source
content are parsed to identify localization files to update for
the build (block 704) and the identified localization files for
translations of the application into one or more languages
selected for the project are updated based on the parsing
(block 706). Here, the IDE by way of the localization
module 114 is operable to ascertain changes to the source

10

15

20

25

30

35

40

45

50

55

60

65

14

code through direct manipulation of the source code. This
may involve parsing the code to recognize updates that have
occurred to the source code, identify localization issues for
updated code portions and resources, and initialize transla-
tions of appropriate resources through a selected translation
source. As discussed, XLIFF files or files having another
designated file format for translations may be included in the
project to facilitate translations. The updating produces
updated files for translation having the designated format
that reflect code changes for the build. These updated
translation/XLIFF files may be exposed for asynchronous
translation as discussed previously. The updated translation/
XLIFF files may also be used to create dynamic resource
files to enable incorporation of translated resources into the
compiled output for the build of the application project.

To do so, dynamic resource files are created for each
selected language from the dynamic resource files (block
708). The dynamic resource files are compiled into compiled
language specific resources for each selected language
(block 710). Then, the compiled language specific resources
for each selected language are packaged for distribution in
accordance with a publishing model for the project (block
710).

A different dynamic resource file may be generated for
each selected language of the project. The dynamic resource
files may be generated by deriving intermediary files corre-
sponding to a particular programming language employed
for the project from XLIFF/translation files and any avail-
able translations. In at least some embodiments, the dynamic
resource files are configured as satellite assembly files for
the particular programming language that may be compiled
by a corresponding compiler. These satellite assembly files
incorporate any available translations for XI.IFF/translation
files that are exposed for translations in prior builds or
previously in the workflow. Subsequent builds may incor-
porate additional translations that may not be available for
the current build. The satellite assembly files are then
compiled by invoking an appropriate compiler. In at least
some embodiments, compiling the dynamic resource files
involves generating language specific dynamic link libraries
(DLLs) to contain translated resources for each of the one or
more selected languages.

In one particular example, the IDE supports multilingual
build integration for development platforms/programming
language that use static compilers/compiled code as opposed
to dynamically compiled script. These include but are not
limited to extensible application markup language (XAML)
based mobile development platforms, one example of which
is Silverlight. Such platforms may not natively make suit-
able log files that may be leveraged for translations available
during the build process. As such, creation of dynamic
resources files may be employed as a substitute for using log
files. In the case of XAML based development platforms, the
dynamic resources files may be configured as .resx files that
may be recognized, handled, and compiled by the platform.
Other types of platforms/programming language are also
contemplated, in which case the dynamic resources files
may be generated in corresponding formats that are appro-
priate for the selected platform.

As mentioned, the multilingual package provides a
mechanism to distribute the project/application with the
multilingual/translated resources in accordance with a cor-
responding publishing model. In at least some embodiments,
producing the package involved enumerating the compiled
language specific resources produced for the selected lan-
guages in a manifest for the application. Then, the manifest
and compiled language specific resources are packaged



US 9,442,744 B2

15

together in the multilingual resource package for distribution
with the application. More generally, availability of trans-
lated resources compiled within the project is indicated in
some manner. This may be accomplished by listing the
resources in a manifest, including metadata in the package,
or by another suitable mechanism to identity the multilin-
gual resources. These indications may be employed by a
device, operating system, application store, and so forth to
recognize the multilingual resources and/or languages sup-
ported by the application. The package having the resources
and appropriate indication may then be distributed via an
application store, on some form of computer readable media,
or otherwise.

In combination, the foregoing build integration tech-
niques support in-build localization for a wide spectrum of
applications including both modern and legacy applications.
When available, log files may be leveraged to derive local-
ization files and translate resources. In other cases, the
system may do the work to create appropriate localization
files directly from source files when suitable logs are
unavailable for a project. To accomplish this, raw source
code may be parsed to identify updates, localization content,
translation issues, and so forth. The, system then handles
production and compilation of files to facilitate in-build
translations for the resulting multilingual package. Thus, an
IDE may be configured to integrate translations for a variety
of applications and programming languages/frameworks
within the build process. Developers may therefore be able
to use a common interface and workflow to create multilin-
gual applications for many different programming lan-
guages, platforms, and file formats directly as part of appli-
cation builds.

Having considered details of multilingual build integra-
tions for compiled applications, consider now a discussion
of an example system and components that can be employed
to implement embodiments of the techniques described
herein.

Example System

FIG. 8 illustrates an example system 800 that includes an
example computing device 802 that is representative of one
or more computing systems and/or devices that may imple-
ment the various techniques described herein. The comput-
ing device 802 may be, for example, a server of a service
provider, a device associated with a client (e.g., a client
device), an on-chip system, and/or any other suitable com-
puting device or computing system.

The example computing device 802 as illustrated includes
a processing system 804, one or more computer-readable
media 806, and one or more I/O interfaces 808 that are
communicatively coupled, one to another. Although not
shown, the computing device 802 may further include a
system bus or other data and command transfer system that
couples the various components, one to another. A system
bus can include any one or combination of different bus
structures, such as a memory bus or memory controller, a
peripheral bus, a universal serial bus, and/or a processor or
local bus that utilizes any of a variety of bus architectures.
A variety of other examples are also contemplated, such as
control and data lines.

The processing system 804 is representative of function-
ality to perform one or more operations using hardware.
Accordingly, the processing system 804 is illustrated as
including hardware elements 810 that may be configured as
processors, functional blocks, and so forth. This may include
implementation in hardware as an application specific inte-
grated circuit or other logic device formed using one or more
semiconductors. The hardware elements 810 are not limited

25

30

40

45

16

by the materials from which they are formed or the process-
ing mechanisms employed therein. For example, processors
may be comprised of semiconductor(s) and/or transistors
(e.g., electronic integrated circuits (ICs)). In such a context,
processor-executable instructions may be electronically-ex-
ecutable instructions.

The computer-readable media 806 is illustrated as includ-
ing memory/storage 812. The memory/storage 812 repre-
sents memory/storage capacity associated with one or more
computer-readable media. The memory/storage 812 may
include volatile media (such as random access memory
(RAM)) and/or nonvolatile media (such as read only
memory (ROM), Flash memory, optical disks, magnetic
disks, and so forth). The memory/storage 812 may include
fixed media (e.g., RAM, ROM, a fixed hard drive, and so on)
as well as removable media (e.g., Flash memory, a remov-
able hard drive, an optical disc, and so forth). The computer-
readable media 806 may be configured in a variety of other
ways as further described below.

Input/output interface(s) 808 are representative of func-
tionality to allow a user to enter commands and information
to computing device 802, and also allow information to be
presented to the user and/or other components or devices
using various input/output devices. Examples of input
devices include a keyboard, a cursor control device (e.g., a
mouse), a microphone for voice operations, a scanner, touch
functionality (e.g., capacitive or other sensors that are con-
figured to detect physical touch), a camera (e.g., which may
employ visible or non-visible wavelengths such as infrared
frequencies to detect movement that does not involve touch
as gestures), and so forth. Examples of output devices
include a display device (e.g., a monitor or projector),
speakers, a printer, a network card, tactile-response device,
and so forth. Thus, the computing device 802 may be
configured in a variety of ways as further described below to
support user interaction.

Various techniques may be described herein in the general
context of software, hardware elements, or program mod-
ules. Generally, such modules include routines, programs,
objects, elements, components, data structures, and so forth
that perform particular tasks or implement particular abstract
data types. The terms “module,” “functionality,” and “com-
ponent” as used herein generally represent software, firm-
ware, hardware, or a combination thereof. The features of
the techniques described herein are platform-independent,
meaning that the techniques may be implemented on a
variety of commercial computing platforms having a variety
of processors.

An implementation of the described modules and tech-
niques may be stored on or transmitted across some form of
computer-readable media. The computer-readable media
may include a variety of media that may be accessed by the
computing device 802. By way of example, and not limita-
tion, computer-readable media may include “computer-read-
able storage media” and “communication media.”

“Computer-readable storage media” may refer to media
and/or devices that enable persistent and/or non-transitory
storage of information in contrast to mere signal transmis-
sion, carrier waves, or signals per se. Thus, computer-
readable storage media refers to non-signal bearing media.
The computer-readable storage media includes hardware
such as volatile and non-volatile, removable and non-re-
movable media and/or storage devices implemented in a
method or technology suitable for storage of information
such as computer readable instructions, data structures,
program modules, logic elements/circuits, or other data.
Examples of computer-readable storage media may include,



US 9,442,744 B2

17

but are not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical storage, hard disks,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or other storage device,
tangible media, or article of manufacture suitable to store the
desired information and which may be accessed by a com-
puter.

“Communication media” may refer to a signal-bearing
medium that is configured to transmit instructions to the
hardware of the computing device 802, such as via a
network. Communication media typically may embody
computer readable instructions, data structures, program
modules, or other data in a modulated data signal, such as
carrier waves, data signals, or other transport mechanism.
Communication media also include any information deliv-
ery media. The term “modulated data signal” means a signal
that has one or more of its characteristics set or changed in
such a manner as to encode information in the signal. By
way of example, and not limitation, communication media
include wired media such as a wired network or direct-wired
connection, and wireless media such as acoustic, RF, infra-
red, and other wireless media.

As previously described, hardware elements 810 and
computer-readable media 806 are representative of instruc-
tions, modules, programmable device logic and/or fixed
device logic implemented in a hardware form that may be
employed in some embodiments to implement at least some
aspects of the techniques described herein. Hardware ele-
ments may include components of an integrated circuit or
on-chip system, an application-specific integrated circuit
(ASIC), a field-programmable gate array (FPGA), a com-
plex programmable logic device (CPLD), and other imple-
mentations in silicon or other hardware devices. In this
context, a hardware element may operate as a processing
device that performs program tasks defined by instructions,
modules, and/or logic embodied by the hardware element as
well as a hardware device utilized to store instructions for
execution, e.g., the computer-readable storage media
described previously.

Combinations of the foregoing may also be employed to
implement various techniques and modules described
herein. Accordingly, software, hardware, or program mod-
ules including operating system 108, applications 110,
development module 112, localization module 114 and other
program modules may be implemented as one or more
instructions and/or logic embodied on some form of com-
puter-readable storage media and/or by one or more hard-
ware elements 810. The computing device 802 may be
configured to implement particular instructions and/or func-
tions corresponding to the software and/or hardware mod-
ules. Accordingly, implementation of modules as a module
that is executable by the computing device 802 as software
may be achieved at least partially in hardware, e.g., through
use of computer-readable storage media and/or hardware
elements 810 of the processing system. The instructions
and/or functions may be executable/operable by one or more
articles of manufacture (for example, one or more comput-
ing devices 802 and/or processing systems 804) to imple-
ment techniques, modules, and examples described herein.

As further illustrated in FIG. 8, the example system 800
enables ubiquitous environments for a seamless user expe-
rience when running applications on a personal computer
(PC), a television device, and/or a mobile device. Services
and applications run substantially similar in all three envi-
ronments for a common user experience when transitioning

10

15

20

25

30

35

40

45

50

55

60

65

18

from one device to the next while utilizing an application,
playing a video game, watching a video, and so on.

In the example system 800, multiple devices are inter-
connected through a central computing device. The central
computing device may be local to the multiple devices or
may be located remotely from the multiple devices. In one
embodiment, the central computing device may be a cloud
of one or more server computers that are connected to the
multiple devices through a network, the Internet, or other
data communication link.

In one embodiment, this interconnection architecture
enables functionality to be delivered across multiple devices
to provide a common and seamless experience to a user of
the multiple devices. Each of the multiple devices may have
different physical requirements and capabilities, and the
central computing device uses a platform to enable the
delivery of an experience to the device that is both tailored
to the device and yet common to all devices. In one
embodiment, a class of target devices is created and expe-
riences are tailored to the generic class of devices. A class of
devices may be defined by physical features, types of usage,
or other common characteristics of the devices.

In various implementations, the computing device 802
may assume a variety of different configurations, such as for
computer 814, mobile 816, and television 818 uses. Fach of
these configurations includes devices that may have gener-
ally different constructs and capabilities, and thus the com-
puting device 802 may be configured according to one or
more of the different device classes. For instance, the
computing device 802 may be implemented as the computer
814 class of a device that includes a personal computer,
desktop computer, a multi-screen computer, laptop com-
puter, netbook, and so on.

The computing device 802 may also be implemented as
the mobile 816 class of device that includes mobile devices,
such as a mobile phone, portable music player, portable
gaming device, a tablet computer, a multi-screen computer,
and so on. The computing device 802 may also be imple-
mented as the television 818 class of device that includes
devices having or connected to generally larger screens in
casual viewing environments. These devices include televi-
sions, set-top boxes, gaming consoles, and so on.

The techniques described herein may be supported by
these various configurations of the computing device 802
and are not limited to the specific examples of the techniques
described herein. This is illustrated through inclusion of the
localization module 114 on the computing device 802. The
functionality of the localization module 114 and other mod-
ules may also be implemented all or in part through use of
a distributed system, such as over a “cloud” 820 via a
platform 822 as described below.

The cloud 820 includes and/or is representative of a
platform 822 for resources 824. The platform 822 abstracts
underlying functionality of hardware (e.g., servers) and
software resources of the cloud 820. The resources 824 may
include applications and/or data that can be utilized while
computer processing is executed on servers that are remote
from the computing device 802. Resources 824 can also
include services provided over the Internet and/or through a
subscriber network, such as a cellular or Wi-Fi network.

The platform 822 may abstract resources and functions to
connect the computing device 802 with other computing
devices. The platform 822 may also serve to abstract scaling
of resources to provide a corresponding level of scale to
encountered demand for the resources 824 that are imple-
mented via the platform 822. Accordingly, in an intercon-
nected device embodiment, implementation of functionality



US 9,442,744 B2

19

described herein may be distributed throughout the system
800. For example, the functionality may be implemented in
part on the computing device 802 as well as via the platform
822 that abstracts the functionality of the cloud 820.

CONCLUSION

Although the invention has been described in language
specific to structural features and/or methodological acts, it
is to be understood that the invention defined in the
appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as example forms of implementing the
claimed invention.

What is claimed is:
1. A method implemented by a computing device com-
prising:
parsing source content during the process of building an
application to identify resources that were modified;

updating localization files having a file format designated
for translations into one or more selected languages
selected for the application based on the resources that
are identified as modified in the build such that the
localization file reflects updates as resources are
updated for each build;

creating dynamic resource files based on the updated

localization files that incorporate available translations
for the resources;

compiling the dynamic resource files into compiled lan-

guage specific resource files for each of the one or more
selected languages;

discarding the dynamic resource files that are created for

the build of the application when the build is complete;
and

producing a multilingual resource package for the appli-

cation configured to contain the compiled language
specific resource files for the application.

2. A method as described in claim 1, wherein the desig-
nated file format comprises extensible markup language
localization interchange file format (XLIFF).

3. A method as described in claim 1, wherein the method
is performed via a localization module provided as a com-
ponent of an integrated development environment (IDE).

4. A method as described in claim 1, wherein updating the
localization files comprises producing separate localization
files in the designated file format for each selected language
that reflect updates made to the source content for the build
of the application, the updates derived according to the
parsing.

5. A method as described in claim 1, wherein the appli-
cation is written using a statically compiled programming
language.

6. A method as described in claim 1, further comprising
exporting the localization files to a selected storage location
and invoking a translator to perform translations of the
localization files.

7. A method as described in claim 1, wherein compiling
the dynamic resource files comprises generating language
specific dynamic link libraries (DLLs) to contain translated
resources for each of the one or more selected languages.

8. A method as described in claim 1, wherein creating the
dynamic resource files comprises building satellite assembly
files to contain language specific resources for each of the
one or more selected languages automatically as part of the
build of the application using translations available for the
build.

10

15

20

25

30

35

40

45

50

55

60

65

20

9. A method as described in claim 1, wherein translations
of updated localization files produced during a particular
build of the application are performed asynchronously with
the particular build.

10. A method as described in claim 1, wherein producing
the multilingual resource package comprises:

enumerating the compiled language specific resources

produced for each of the one or more selected lan-
guages in a manifest for the application;

packaging the manifest and compiled language specific

resources together in the multilingual resource package
for distribution with the application.

11. A method as described in claim 1, wherein the
application in an application developed using an extensible
application markup language (XAML) based mobile devel-
opment platform.

12. A method as described in claim 1, wherein the
dynamic resource files are intermediary files that are created
by transforming the localization files into a programming
language specific format that compiles multilingual
resources into the build.

13. One or more non-transitory computer-readable stor-
age media storing instructions that, when executed by a
computing device, implement a localization module config-
ured to perform operations comprising:

obtaining compiled source content of a project for a build

of an application under development;

parsing raw resource files of the compiled source content

to identify localization files to update for the build, the
identification based on portions of the source content
that have been updated while the application is under
development, the localization files having a designated
file format to facilitate translations;

updating the identified localization files for translations of

the application into one or more languages selected for
the project based on the parsing;

creating dynamic resource files for each selected language

from the updated localization files;

compiling the dynamic resource files into compiled lan-

guage specific resource files for each selected language;
and

packaging the compiled language specific resource files

for each selected language for distribution in accor-
dance with a publishing model for the project.

14. One or more non-transitory computer-readable stor-
age media as described in claim 13, wherein the designated
file format comprises extensible markup language localiza-
tion interchange file format (XLIFF).

15. One or more non-transitory computer-readable stor-
age media as described in claim 13, wherein one of said
languages selected for the project is a pseudo language and
the localization module is further configured to translate the
project into the pseudo language via a pseudo-translation
engine.

16. One or more non-transitory computer-readable stor-
age media as described in claim 13, wherein the application
is developed using a statically compiled programming lan-
guage that does not produce a log file indicative of updated
resources during project builds.

17. A computing device comprising:

a processing system;

one or more modules operable at least in part via hardware

of the processing system to implement an integrated

development environment (IDE) configured to:

ascertain one or more languages selected by a devel-
oper for translations of an application under devel-
opment using the IDE; and



US 9,442,744 B2

21 22

during a build of the application via the IDE, facilitate output the updated localization files that are created to
in-build translations of a multilingual resource pack- enable asynchronous translations via one or more trans-
age by generating updated localization files for each lation sources;
of the selected languages in a designated file format obtain translations of localization files that are available
established to facilitate translations, the updated 3 during the build; and
localization files reflecting updates that were made to incorporate the translations that are obtained into the
the application, the updated localization files dynamic resource files that are created for inclusion in
employed by the IDE during the build to: the gomplled language specific resource files for the

application.

create dynamic resource files for each selected lan-

guage from the updated localization files when the

updates are made to the application in the build;

compile the dynamic resource files into compiled

language specific resource files for each selected
language; and

produce the multilingual resource package that con-

tains the compiled language specific resource files

for each selected language for distribution with the

application.

18. The computing device of claim 17, wherein the

integrated development environment (IDE) is further con-

figured to: I T S

10 19. The computing device of claim 17, wherein the
designated file format comprises extensible markup lan-
guage localization interchange file format (XLIFF).

20. The computing device of claim 17, wherein produc-
tion of the multilingual resource package comprises:

15 enumerating the compiled language specific resources
produced for each of the one or more selected lan-
guages in a manifest for the application;

packaging the manifest and compiled language specific
resources together in the multilingual resource package

20 for distribution of the application.



